An INTEL 8080 Cross Assembler for the

Modcomp |l Minicomputer
M. W. Sievers

Communications Systems Research Section

The flexibility of Modcomp’s macro assembler has been exploited to implement
an INTEL 8080 cross assembler. This simple implementation is very powerful,
allowing, for example, macro definitions, and declaration of common and
external labels. The cross assembler may be executed on any Modcomp II

minicomputer.

I. Introduction

A macro assembler is a special type of assembler that
permits the definition of prototype constructs or macros.
Each macro prototype is labeled and may consist of other
macro references, argument paraforms and/or assembly
language code. A macro is referenced by its label; each
reference is usually followed by an argument list. During
pass 1 of the macro assembler, macro prototypes are
placed in a prototype table. Each time the macro
assembler recognizes a macro label in the op code field of
a source statement, it fetches the prototype for that macro
from the table and replaces argument paraforms with
arguments from the argument list. The resultant construct
is then inserted into the source after the statement in
which it was referenced. After completing pass 1, the
usual second assembler pass is invoked which produces a
complete binary object file.

The flexibility of macro assemblers can be exploited to
generate cross assemblers for virtually any machine with

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-32

minimal effort. A cross assembler can be implemented by
defining a set of macro prototypes whose labels corre-
spond to the mneumonics in the target assembly language.
Once these prototypes have been defined, assembly
directives for the target machine may be assembled by the
host machine’s macro assembler.

Binary object produced by the cross assembler de-
scribed above is not necessarily directly transferable to the
target machine. For example, differences may arise in
word length or byte ordering. These differences can be
resolved by a loader routine. The complexity of the loader
naturally depends on the complexity of the differences
which it must resolve. It can be expected however, that a
loader routine will in general be far simpler to write than
an assembler that generates directly transferable object.

This paper will describe an INTEL 8080 cross
assembler and loader that executes on a Modcomp II
minicomputer. The cross assembler is very flexible

151

allowing, for example, the definition of macro prototypes,
and the declaration of common and external labels. If
desired by the user, the loader can write binary output
onto paper or magnetic tape for easy transport to an 8080
microcomputer.

Il. 8080 Assembler

An 8080 cross assembler has been implemented as
described above by defining a collection of macro
prototypes written in Modcomp’s macro assembly lan-
guage (ref. section VIII of Modcomp’s Assembler Refer-
ence Manual, TM16094). These macros are labeled with
8080 mneumonics and collectively stored on disk under
the label ASM8080. ASM8080 macros are inserted into an
8080 source program at assembly time via the INSERT
directive (ref. section IV, TM16094, for a discussion of the
INSERT directive). Once ASMB8080 has been inserted,
Modcomp’s macro assembler can assemble 8080 source
code.

Four macro prototypes found in ASM8080 are shown
below. The first three macros define, respectively, one-,
two-, and three-byte 8080 instructions. The fourth macro
is a special address macro which is referenced by triple
byte instruction macros (see below).

*SINGLE BYTE MACRO
HLT MAC

DFC #76

EMP
*DOUBLE BYTE MACRO
IN MAC

DFC #DB

DFC %1

EMP
*TRIPLE BYTE MACRO
CALL MAC

DFC #CD

ADDR %1,%2

EMP
*SPECIAL ADDRESS MACRO
ADDR MAC

IFM %2,A

DFC %1,%2

EXM

152

A AOP
DFC #FFFF, %1
EMP

The single byte macro above is typical of all single byte
8080 instruction macros. It consists of a label, in this case
HLT (HALT), which corresponds to an 8080 mneumonic,
and a DFC (DEFINE CONSTANT) statement. The DFC
defines a constant equal to the value of the operation code
for the mneumonic.

The macro for the IN (INPUT) instruction shown above
is a typical double byte instruction macro. Two DFC
statements define, respectively, the operation code for the
IN mneumonic and an argument paraform for its operand.
As mentioned previously, the argument paraform is
replaced by an actual argument at assembly time.

The CALL (CALL SUBROUTINE) macro is a typical
three-byte instruction macro. In addition to defining an
operation code constant, the address macro ADDR is
referenced. ADDR examines the address field of the 8080
source statement. If the address field contains two address
bytes, ADDR creates a DFC that defines the values of
these bytes. If the address field contains a single address
word, ADDR creates a DFC which defines a hexadecimal
FFFF and the address word. The hexadecimal FFFF is a
flag recognized by the loader which signals it to exchange
the bytes in the address.

The 8080 cross assembler is a subset of Modcomp’s
macro assembler and as such contains the macro
assembler’s inherent flexibility and limitations. It is
permissible therefore to use any of the macro assembler’s
pseudo operations, such as ORG (ORIGIN), COM
(COMMON), RES (RESERVE), DFC (DEFINE CON-
STANT), EXT (EXTERNAL), and INT (INTERNAL) to
specify program origin, define blocks of common, reserve
areas in core and prepare subroutines for subsequent
storage in a subroutine library. The reader should refer to
Section IV of Modcomp’s Assembler Reference Manual
for a discussion of these pseudo directives and rules
governing their use. Note that Modcomp macro assembler
restrictions require that the 8080 source format resemble
Figure 1.

A sample cross assembly is shown in Figure 2. As
already mentioned, 8080 assembly source statements are
constrained to conform to all rules and limitations
governing writing in Modcomp’s macro assembly lan-
guage. In addition to these requirements, there are the
following nuances particular to this 8080 cross assembler:

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-32

(1) When using 8080 assembly directives that require a
register pair, it is necessary to include both register
names in the operand field. For example, PUSH B is
not acceptable; PUSH BC must be used.

(2) A special macro called REGDEF is included in the
ASMB8080 prototype collection. This macro is used
to define the value of 8080 registers and register
pairs via EQUATE statements. It must be refer-
enced in the 8080 source after all macro prototypes
and common definitions but prior to any reference
to 8080 registers or register pairs (ref. Figure 1).

(3) Since the register names (A, B, C, D, E, H, L, M)
and register pairs (BC, DE, HL) are defined by
EQUATE statements in REGDEF, register names
and register pair names may not be used as labels.

(4) The dollar sign ($), when used in the operand field
of a statement, refers to the current contents of the
program counter plus 1.

I1l. Loader

The purpose of the loader is to compress binary files
produced by the cross assembler and to reorder address
bytes to be in the order expected by the 8080. The loader
may be executed only after all addresses and common
have been resolved. Modcomp’s link editor should be used
as required to perform the resolution function.

The loader is catalogued as a background overlay under
the alias LDR. It reads data from the file assigned to BI
and writes to the file assigned to BO. Since BI and BO may
be assigned to any valid Modcomp file, it is possible for
example, to read BI from disk and write BO onto paper
tape. This facilitates producing transportable binary
object. The BI and BO files must be assigned prior to
executing the loader.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-32

The loader recognizes special function codes inserted
into the binary output of a cross assembly by the macro
assembler. These codes inform the loader, for example, to
reserve an area in core and initialize that area to a given
value, or exchange the bytes in a word. Additionally, the
loader recognizes the codes for origin directive and end of
object. When one of these codes is found, control is passed
to a routine in the loader that handles the particular code.
With the exception of the code for exchanging bytes, the
function codes are discussed in an appendix of the
Modcomp Macro Assembler Reference Manual.

The other function performed by the loader is that of
compressing the object file by removing extraneous zero
high-order bytes. These bytes are inserted by the macro
assembler because it expects to assemble sixteen-bit
Modcomp words and not eight-bit 8080 words. Refer to
the sample assembly in Figure 2.

Figures 3 through 6 illustrate the flowchart for the
loader. The main routine (Figure 3) recognizes the special
function codes described above and determines what
routine to execute. Subroutine GTRCRD (Figure 4) reads
records from the BI file into a core buffer called IBUFF.
Subroutine GETWORD (Figure 4) fetches words out of
IBUFF and stores them in buffer INEXT. If GETWORD
is asked to fetch a word beyond the last word in IBUFF, it
calls GTRCRD. Subroutine SCAN (Figures 5 and 6) scans
portions of the input buffer for the exchange byte code. If
that code is found, SCAN replaces the code with the low-
order byte of the next word and shifts the high-order byte
of the next word into its low-order byte. Subroutine
COMPRESS (Figure 6) examines portions of the input
buffer for extraneous zero high-order bytes. If one is
found, COMPRESS shifts the next non-extraneous byte
into it, thereby removing it. Finally, subroutine PUT-
WORD (Fig. 5) places words into an output buffer called
OBUFF. PUTWORD will write the output buffer to the
BO file when it is full or when an end of object has been
found in the input buffer. Figure 7 illustrates the binary
produced by the loader.

153

MODCOMP MACRO ASSEMBLY (X)#H DATE STANDARD-0/S
SAMPLE 3080 PROGRAM
2 *
3 * THIS IS A SAMPLE INTEL 8080
4 % ASSEMBLY LANGUAGE PROGRAM
5 *
6 PGM SAMPLE
7 STOP MAC
8 HLT
9 EMP
10 LOOP MAC
at NOP
12 JNC §-2
13 EMP
14 INS 50,ASM8080
316 COM cCOM 100
317 C 0000 COMI CEQ COM
318 C 0001 COM2 CEQ COM#l
319 C 0002 COM3 CEQ COM#2
320 REGDEF
321 A 0007 A EQU 7
USER 322 A 0000 B EQU ©
MACRO 323 A 0001 C EOU)
DEFINITIONS 324 A 0002 D EQU 2
325 A 0003 E EQU 3
| 326 A 0004 H EQU 4
327 A 0005 L EQU 5
INS 399 A 0000 BC B o
SO, ASME080 330 A 0001 DE EQU |
331 A 0002 HL EQU 2
! 332 A 0003 SP EQU 3
333 A 0003 PSW EQU 3
USER 334 A 0500 ORG #500
MACRO 335 0500 A 0019 RES 10,25
DEFINITIONS 336 EXT SUBR
337 START CALL SUBR
! 338 050A A 00CD DFC #CD
339 050B A FFFF DFC #FFFF,SUBR
COMMON 050C X 0001
DECLARATIONS 340 JNC $
341 050D A 00D2 DEC #D2
‘ 342 050E A FFFF DFC #FFFF,$
050F R 050E
343 MOV A,B
8080 ASM 344 0510 A 0078 DEC 8*%A+B+#40
STATEMENTS '
NOT 346 0511 A OOEB éggc #EB
REFERENCING 347 LOGP
8080 348 0512 A 0000 DFC 0
REGISTERS 349 0513 A 00D2 DFC #D2
350 0514 A FFFF DFC #FFFF,$=2
1 0515 R 0512
351 LABLE NOP
382 0516 A 0000 DFC
REGDEF 353 JC LABLE
354 0517 A OODA DFC #DA
‘ 355 0518 A FFFF DFC #FFFF,LABLE
0519 R 0516
356 . Jz #18,#60
ANY 8080 ASM 357 051A A OOCA DEC #CA
STATEMENTS 358 05!B A 0018 DFC #18,#60
051C A 0060
359 STOP
360 051D A 0076 DFC #76
END 361 A 0550 ORG ~ #550
362 LDA COMI
363 0550 A 003A DFC #3A
364 0521 A FFFF DFC #FFFF,COMI
. . 0552 C 0000
Fig. 1. Generalized 8080 source format 365 PUSH PSW
366 0553 A OOF5 DEC |6%PSW+#C5
367 PUSH BC
368 0554 A 00C5 DEC. 16*BC+#C5
369 0555 A 5448 TEXTI DFC “THIS IS SAMPLE TEXT®
0556 A 4953
0557 A 2049
0558 A 5320
0559 A 5341
055A A 4D50
055B A 4C45
055C A 2054
055D A 4558
055E A 5420
370 055F A 534F TEXT2 DFC %S0 1S THIS®
0560 A 2049
0561 A 5320
0562 A 5448
0563 A 4953
3N 0564 R O50A END START
$s

Fig. 2. Sample assembly

154 JPL. DEEP SPACE NETWORK PROGRESS REPORT 42-32

ZERO QUTPUT
BUFFER

ZERO FLAGS

GTRCRD

GET RECORD
FROM B! FILE,
STORE IN IBUFF

IS THIS THE
LAST RECORD?

LAST = 1

OBUFF(1) = {BUFF(1)
OBUFF{4) = IBUFF(5)
OBUFF(5) = IBUFF(8)

IPTR = 7
OPTR =5

@._..

ODD FLAG
SET?

GETWORD

FETCH NEXT
WORD IN IBUFF,
STORE IN INEXT(1)

Fig. 3. 8080 loader main program

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-32

IS INEXT(1)

IS INEXT(1)
CODE?

AN ORG
CODE?

A RES CODE?

AN END OBJ

IS INEXT(1)

RIGHT SHIFT
INEXT(1)
8 BITS

155

COMPRESS
IORCNT =
INEXT(1) COMPRESS IORCNT ITEMP = #50 ITEMP = INEXT(1) IS THERE A
WORDS TRANSFER
ADDR?
GETWORD
ITEMP = JORCNT GET NEXT WORD, SET ODD FLAG
PUT IN INEXT(1)
ITEMP = #78
SET ODD FLAG ONSG
BYTES IN
INEXT(1) GETWORD
GET NEXT WORD,
PUT INTO INEXT(1)
GETWORD -
SHIFT 3 BIT
WORDS FROM N0 e
INPUT BUFFER EXCHANGE BYTES
ININEXT(1)
SCAN PUTWORD
SEARCH FOR
BYTE EXCHANGE WRITE [TEMP
CODE INTO OBUFF

Fig. 3 (contd)

156 JPL DEEP SPACE NETWORK PROGRESS REPORT 42-32

SHIFT 8 BITS SHIFT UPPER BYTE
INEXT(1) INTO (TEMP = #51 INEXT(1) INTO 'S INEXT()
ITEMP LOWER BYTE INEXT N AL
PUTWORD GETWORD GETWORD
WRITE ITEMP GET NEXT WORD, GET NEXT WORD,
INTO OBUFF STORE IN INEXT(1) 1 STORE IN INEXT(1)
1S INEXT(1)
AN END OBJ
‘ . CODE?
SHIFT LOWER
SET END FLAG EXCHANGE BYTES BYTE INEXT(1)
IN INEXT(Y) INTO ITEMP
1S INEXT(1) AN
ORG CODE?
PUTWORD PUTWORD
WRITE INEXT(1 SHIFT 8 BITS
INTO OBUFF‘) INEXT(1) INTO WRITE ITEMP
! ITEMP INTO OBUFF
WRITE OBUFF TO 80

SHIFT INEXT(1)
RIGHT 8 BITS
TYPE END OF PUTWORD
JOB MSG
WRITE ITEMP
INTO OBUFF
IORCNT =
sToP INEXT(1)

Fig. 3 (contd)

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-32

157

I I

GETWORD
GET IORCNT WORDS| IS SHIFT INEXT(1) "
T oRGy Yo RESET ODD FLA INTO ITEMP ESET ODD FLAG _IrSR;zESIEEERA
IN INEXT ADDR?
SCAN COMPRESS PUTWORD é
SEARCH FOR BYTE COMPRESS IORCNT WRITE ITEMP
EXCHANGE CODE WORDS INTO OBUFF SHIFT UPPER BYTE
INEXT(1)
INTO ITEMP
GETWORD
SHIFT LOWER BYTE °
IORCNT INTO GET NEXT WORD
; P
ITEMP STORE IN INEXT(1) UTWORD
WRITE ITEMP
INTO OBUFF
PUTWORD
WRITE 1TEMP EXCHANGE BYTES
IN INEXT(1
INTO OBUFF M GETWORD

GET NEXT WORD,
STORE IN INEXT(1)

PUTWORD

WRITE INEXT(1)

INTO OBUFF EXCHANGE BYTES

IN INEXT(1)

Fig. 3 (contd)

158 JPL DEEP SPACE NETWORK PROGRESS REPORT 42-32

SET END FLAG

SHIFT UPPER BYTE
INEXT(1) INTO
ITEMP

PUTWORD

WRITE ITEMP INTO
OBUFF, WRITE
OBUFF TO BO

TYPE END OF
JOB MSG

STOP

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-32

SET END FLAG

PUTWORD

WRITE ITEMP INTO
OBUFF, WRITE
OBUFF TO BO

TYPE END OF
JOB MSG

STOP

Fig. 3 (contd)

SHIFT UPPER BYTE
INEXT(1} INTO
ITEMP

GETWORD

GET NEXT WORD,
STORE N INEXT(1)

PUTWORD

WRITE ITEMP
INTO OBUFF

ITEMP = INEXT(1)

GETWORD

GET NEXT WORD,
STORE N INEXT(1)

EXCHANGE BYTES
ININEXT(1)

PUTWORD

WRITE INEXT(1)
INTO OBUFF

159

DOJ=1,1
READ RECORD FROM _o| (115 NUMBER OF
B! FILE TO IBUFF r WORDS TO BE
| FETCHED)
l PTR = IPTR + 1
ANY 1/0 | IPTR = IPTR
ERRORS ? |
| IPTR >100? ABORT
SYNC ERROR? |
I GTRCRD
|__] INEXT(J) =
IBUFF(IPTR) GET RECORD
CHECK
SUM
ERROR?
IS THIS THE YES

LAST RECORD? LAST = 1

NO

— (PTR = 4

Fig. 4. 8080 loader subroutine GTRCRD, subroutine GETWORD

160 JPL DEEP SPACE NETWORK PROGRESS REPORT 42-32

NVIS aunnoiqns ‘GHOMLNd 3uiNoIgns 1apeo) 0808 °G “Sid

[4919 e e

(31d0)44NF0 NI
Q¥Om TO1LS

01 Ol Z + 4140
o 44N90 311IMm = (2)44n80
=] YIIWNAN Q¥OON
LNIWIIONI
&ddddy
= (DLX3NT wns YIGNNN QUOD +
V14 NDIHD ILNIWOD = (1)44n90
JVMS ng (41d0)34N80 oogy = (1)
NI QIOM
OIS ‘v = ¥1dO
6§08
B Z + 4140 . _
(DLXANI NI L=t = (24480 40 =3O
SILAS IONVHOIXI 1430 O¥IZ
YIINAN
34+
| + LNDIO 138 QO ?t%& 001 = 3140
= INDYO} OV1d dVMS 114 04 cout >
Ol 44N90 ILIIM
SIA
_ oN wns -
INDYOI = INDI 931D ALIWOS L+ 41dO = ¥LdO

g e aQyOM1Nd

161

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-32

SOV14 Qa0 13SN

44N90 OINI
dW3Ll 3LI{M

QIOMLNd

dwall OINI
(MLXIINI LIIHS

ON

SSIUAWOD BuN0IGNS ‘NYIS Bulnoiqns 1apeo] 0808 "9 "31d

L+ INDYOI
= INDYOI

9v14 Ad0 135
(NLX3INI = aw3aLl

NYN1TY ¢INDYO!
> SIA
dW31l OINI __ Hw = w
(MLXING ILAS
¥IMOT JWOLS
44N80 OLNI L+ =3
dW31l 31IAM
QIOMLNd
44N80 OLNI
awall (MIXINI ILIYM

OINI (MLX3NI
3LAG ¥3ddN LAIHS

QIOMLNd

SIA

éddy <
(rLX3NI

&13S

SIA 9Vv14 aao

(1 + DIXANI
J1A8 ¥3IMO1 OL
(1 + DIXANI 3LAg
¥3ddN LAIHS

it

4

OV
dVMS 135

(L + DIXANI
ILAE ¥IMOT HLIM
(DLXANI 3DV T1d N

I = INDYOI
= INDYOI

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-32

162

FIRST RECORD

RECORD CODE BYTE COUNT CHECK SUM)
(2 BYTES) (1 BYTE) (4 BYTES) (4 BYTES)
RD DATA
RECO | BYTE 200
SECOND AND SUBSEQUENT RECORDS
RECORD CODE BYTE COUNT CHECK SUM
(2 BYTES) (1 BYTE) (4 BYTES)

RECORD DATA

I BYTE 200

RECORD CODE: XX, INDICATES xxH ReCORD

RECORD DATA

TH
IS THE LAST RECORD

CODE (1 BYTE)

OPTIONAL
DATA

CODES: 5]16

50

7016

7816
ANYTHING ELSE

16

7XX16 INDICATES XX]6 RECORD; THIS ONE

RESERVE, DATA CONTAINS RES VALUE

ORIGIN, DATA IS ORIGIN

= END OF OBJECT, NO DATA PRESENT

END OF OBJECT, DATA = TRANSFER ADDR

BYTE COUNT OF DATA BEFORE NEXT CODE

Fig. 7. Loader format

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-32

163

